GeoClassroom Physical Geology Historical Geology Structure Lab

Historical Geology

 

SEDIMENTARY ROCKS—

THE ARCHIVES OF EARTH HISTORY

 

 

OUTLINE

INTRODUCTION

SEDIMENTARY ROCK PROPERTIES

            Composition and Texture

            Sedimentary Structures

            Geometry of Sedimentary Rocks

            Fossils—The Biologic Content of Sedimentary Rocks

DEPOSITIONAL ENVIRONMENTS

            Continental Environments

            Transitional Environments

            Marine Environments

            ¨Perspective  Evaporites—What We Know and Don’t Know

INTERPRETING DEPOSITIONAL ENVIRONMENTS

PALEOGEOGRAPHY

SUMMARY

 

CHAPTER OBJECTIVES

The following content objectives are presented in Chapter 6:

¨     Sedimentary rocks have a special place in deciphering Earth history because they preserve evidence of surface processes responsible for deposition, and many contain fossils.

¨     Geologists recognize three broad areas of deposition—continental, transitional, and marine—each with several specific depositional environments.

¨     The distinctive attributes of sedimentary rocks result from processes operating in specific depositional environments.

¨     Textures such as sorting and rounding as well as sedimentary structures provide evidence about depositional processes.

¨     Three-dimensional geometry of sedimentary rock bodies and fossils are also useful for determining depositional environments.

¨     Sedimentary structures such as ripple marks, cross-bedding, and mud cracks taken with other rock features allow geologists to make environmental interpretations with a high degree of confidence.

¨     The interpretations of sedimentary rocks in the chapters on geologic history are based on the considerations reviewed in this chapter.

¨     Interpretation of how and where rocks formed, especially sedimentary rocks, is the basis for determining Earth’s ancient geographic features.

 

Check out these Historical Geology Study Guides on Amazon

 

LEARNING OBJECTIVES

To exhibit mastery of this chapter, students should be able to demonstrate comprehension of the following:

¨      the origin and environmental significance of sedimentary rock features

¨     determination of specific depositional environment through a variety of sedimentary rock features.

¨     the importance of observing present-day depositional processes and environments to aid in the interpretation of ancient processes and environments

¨     the basic features of deposition in continental, transitional, and marine environments

¨     the importance of sedimentary structures and fossils in interpreting sedimentary environments

¨     the reconstruction of paleogeography through sedimentary rocks

 

CHAPTER SUMMARY

   1.    Sedimentary rocks preserve evidence of the surface processes responsible for deposition, and any included fossils record prehistoric life.

            Figure 6.1       Jurassic-age Navajo Sandstone in Zion National Park, Utah

 

2.   The physical and biologic features of sedimentary rocks provide information about the depositional processes responsible for them. Rounding and sorting are important features of texture, and give us information about transportation and deposition.

Figure 6.2       Rounding and Sorting in Sediments

 

   3.    Sedimentary structures and fossils are the most useful attributes of sedimentary rocks for environmental analyses, but textures and rock body geometry are also helpful.

Table 6.1         Summary of Sedimentary Structures

Figure 6.3       Stratification in Sedimentary Rock

Figure 6.4       Turbidity Currents and Graded Bedding

Figure 6.5       Cross-Bedding           

Figure 6.6       Current Ripple Marks

Figure 6.7       Wave-Formed Ripple Marks

 

 

Figure 6.8       Mud Cracks Form in Clay-Rich Sediments When They Dry and

Contract

Figure 6.9       Bioturbation Results from Organisms Burrowing Through

Sediments

Figure 6.10    Using Sedimentary Structures to Determine the Relative Ages of

Deformed Sedimentary Rocks

 

4.   Geologists recognize three primary depositional areas—continental, transitional, and marine—each of which has several specific environments. 

Figure 6.11    Depositional Deposits

Table 6.2        Summary Chart of Rocks and Features in Depositional

Environments

 

5.   Fluvial systems may be braided or meandering. Braided streams deposit mostly sand and gravel, whereas deposits of meandering streams are mostly mud and subordinate sand bodies with shoestring geometry. 

Figure 6.12    Fluvial Deposits of Braided and Meandering Streams

 

6.   An association of alluvial fan, sand dune, and playa lake deposits is typical of desert depositional environments. Glacial deposits consist mostly of till in moraines and outwash.

Figure 6.13    Deposits in Deserts

Figure 6.14     Glaciers and Their Deposits

 

7.   The simplest deltas, those in lakes, consist of a threefold sequence of rocks, grading from finest at the base upward to coarser-grained rocks. Marine deltas dominated by fluvial processes, waves, or tides are much larger and more complex.

Figure 6.15    Origin of a Delta

Figure 6.16     Marine Deltas

 

8.  A barrier island complex includes lagoon, beach, and dune subenvironments in which beach sands grade offshore into finer deposits

Figure 6.17     Barrier Islands and Tidal Flats         

 

Enrichment Topic 1. Investigating Sand.

The International Sand Collectors Society has assembled a collection of sand samples from various locations around the world. Accompanying slide presentations and suggestions for classroom activities are included in the kit. Carbonate, quartz, and gypsum sand are some of the included samples that are discussed with regards to formation and source rocks. The Sand Collectors Society Kit is available from  http://www.paccd.cc.ca.us/instadmn/physcidv/geol_dp/dndougla/SAND/KIT/home.htm .

 

 

 

 

9.   Inner shelf deposits are mostly sand, whereas those of the outer shelf are mostly

mud; both have marine fossils and bioturbation. Much of the sediment from land crosses the shelves and is deposited on the continental slope and rise as submarine fans.

Figure 6.18     Depositional Environments on the Continental Shelf, Slope, and Rise

 

  10.  Either pelagic clay or oozes derived from the shells of microscopic floating organisms cover most of the deep seafloor.

Figure 6.19     Sediments on the Deep Seafloor         

 

Enrichment Topic 2. Microorganisms.

Many students are surprised to discover that some of the intricate microscopic remains were produced by single-celled organisms. Students can investigate foraminifera, diatoms, coccolithophores, radiolarians, and ostracodes. Are any of these multicellular organisms? What are the preferred environments for each organism? Are calcareous species more likely to be found in arctic or tropical regions? Is there selective preservation of calcareous and siliceous fossils in some locations? The University of California Museum of Paleontology offers a brief overview of microfossils (http://www.ucmp.berkeley.edu/people/klf/About_Microfossils.htm). Several SEM photos are available on the MicroGallery website: (http://www.ucmp.berkeley.edu/people/klf/MicroGallery.htm ) 

 

11.    Most limestone originates in shallow, warm seas where little detrital mud is present. Just like detrital rocks, carbonate rocks may possess cross-beds, ripple marks, mud cracks and fossils that provide information about depositional processes.

Figure 6.20     Carbonate Depositional Environments

 

12.    Evaporites form in several environments, but the most extensive ones were deposited in marine environments. In all cases, they formed in arid regions with high evaporation rates.

 

13.    With information from sedimentary rocks, as well as other rocks, geologists determine the paleogeography of Earth. 

Figure 6.21     Lower Silurian Strata in the Eastern United States

Figure 6.22     Middle and Upper Ordovician Strata in Northern Arkansas

Figure 6.22     Paleogeographic Maps

 

 

 


LECTURE SUGGESTIONS

The Nature of Sedimentary Rocks and Depositional Environments

 

   1.    Some students find “clay” to be a confusing term because it can refer to both size and composition, depending on the context. The term “mud” is a useful way to designate size but not composition.

 

   2.   Glacial deposits offer a good opportunity to review clast sizes, sorting, and rounding. Because till is directly deposited by melting ice, the particle sizes range from small to extremely large. However, there is no opportunity for rounding or sorting.  Outwash, however, is deposited by meltwater. As such, the particle size is restricted. (Ice is more powerful a geologic agent than running water, and can carry much larger particles.) Outwash deposits also differ from drift because they are sorted.  (Running water sorts; glacial ice does not.)             

 

   3.    Discuss the distinction between weathering and erosion, and the role each plays in producing characteristics of composition, bedding, and other sedimentary rock characteristics. Weathering by abrasion may occur during transportation, and particles in transport—with the exception of oolites—never get bigger!

 

   4.    Emphasize to students that, unlike detrital sedimentary rocks, the shell and skeletal particles that occur in biochemical sedimentary rocks are not transported by streams to depositional sites in marine environments. Instead these biochemical rocks form from the organisms that lived on, in, and above the sea floor.

 

   5.    This chapter provides another opportunity to reinforce the concept of facies. Specifically, you may try to clarify for students that facies move in relation to one another and the shoreline as sea level rises and drops, or deltas prograde.

 

   6.    To illustrate how certain depositional environments are recognized by geologists, offer a few sets of sedimentary rock types, textures, structures, and types of fossils (e.g. mud cracks, rain drop prints, and fossil plants or animals) and have students determine which depositional environments are most likely represented by the collective evidence.

 

CONSIDER THIS

   1.    If a sedimentary facies is deposited during a transgression or regression, is that facies of the same age everywhere? If so, why? If not, how might age equivalence within the facies be demonstrated?

 

   2.    What types of sedimentary rocks would provide evidence of arid conditions? What types of sedimentary rocks would provide evidence of tropical climates?

 

   3.    Has the distribution and abundance of some sedimentary rock types changed over the duration of Earth history? Throughout the rest of the course, focus on how these changes are tied to atmosphere and hydrosphere evolution, as well as changes in plate tectonics.

 

 

IMPORTANT TERMS

alluvial fan

depositional environment

ripple mark

barrier island

drift

rounding

biogenic sedimentary structure

fluvial

sand dune

Bioturbation

graded bedding

sedimentary structure

braided stream

meandering stream

sorting

continental rise

mud crack

stratification (bedding)

continental shelf

outwash

tidal flat

continental slope

paleogeography

till

cross-bedding

playa lake

varve

Delta

progradation

 

 

SUGGESTED MEDIA

Videos

  1. Weathering and Soils, Earth Revealed #15, Annenberg/CPB
  2. Sedimentary Rocks: The Key to Past Environments, Earth Revealed #17, Annenberg/CPB
  3. Running Waters I: Rivers, Erosion and Deposition, Earth Revealed #19, Annenberg/CPB
  4. Running Waters II: Landform Evolution, Earth Revealed #20, Annenberg/CPB
  5. Water Cycle and Erosion, EME Corporation
  6. Coastal Dunes, Films for the Humanities and Sciences
  7. Glacial Deposits, Films for the Humanities and Sciences
  8. Limestone, Films for the Humanities and Sciences
  9. River Channel Forms, Films for the Humanities and Sciences
  10. Waves and Beaches, Films for the Humanities and Sciences
  11. Geomorphology: Study of the Shape of Earth, Tell ME Why Sales Co.
  12.  Running Water: How it Erodes and Deposits, Tell ME Why Sales Co.
  13. Waves, Coastlines, and Beaches, Tell ME Why Sales Co.
  14. Weathering and Erosion, Tell ME Why Sales Co.
  15. Living Glaciers and Signs of Ancient Ice Sheets, Educational Images Ltd
  16. Sand Dune Ecology and Formation, Educational Images, Ltd.

 

 

 

Software

  1. Earth’s Dynamic Surface, Tasa Graphics Arts, Inc.
  2. Stream Meanders and Deltas, Educational Images, Ltd. 
  3. Earth’s Dynamic Surface, RockWare, Inc.
  4. Explore Cross Sections, Geological Society of America
  5. Stream Meanders and Deltas, Educational Images Ltd
  6. Continental Glaciation, Educational Images Ltd

 

 

Demonstration Aids

  1. Deep-Sea Sediments, slide set, Educational Images, Ltd.
  2. Submarine Canyons and Deep Sea Fans slide set, Educational Images, Ltd
  3. Sedimentary Rocks Features, JLM Visuals
  4. Sedimentary Features and Environments, JLM Visuals
  5. Primary Sedimentary structures: Graded and Convoluted Bedding, Bioturbation, Loading, Rill Marks, Educational Images, Ltd.
  6. Primary Sedimentary Structures: Cross Bedding, Ripple Marks, Mud Cracks
  7. Sedimentary Rock Collection, Earth Science Educator’s Supply
  8. Glaciers and Their Tracts, slide set, Educational Images Ltd
  9. Beaches, slide set, Educational Images, Ltd
  10. Seabeaches: Their Formation and Erosion, slide set, Educational Images, Ltd
  11. Rocks and Topography: Sandstones, slide set, Educational Images, Ltd

 

 

 

CHAPTER 6 - ANSWERS TO QUESTONS IN TEXT

Multiple Choice Review Questions

   1.    a

   5.    d

   9.    d

   2.    c

   6.    d

10.    d

   3.    e

   7.    a

     

   4.    b

   8.    c

 

 

Short Answer Essay Review Questions

11.     Evaporites are mostly rock gypsum and rock salt, formed in saline lakes, playa lakes, and some marginal marine environments. Evaporites form in arid environments with high evaporation rates.

 

12.     Inner shelf deposits are mostly sand, contain marine fossils, are bioturbated, and are commonly cross-bedded. Bedding planes are marked by wave-formed ripple marks. This is the high energy area that is periodically stirred up by waves and tidal currents. Outer shelf deposits are typically mud with marine fossils. This the low energy part of the shelf.

 

 

 13.   Desert environments are commonly inferred from an association of features found in sand dune, alluvial fan, and playa deposits. Alluvial fans form along the margins of desert basins and form a triangular deposit of sand and gravel. Wind-blown dunes are typically composed of well-sorted, well-rounded sand with cross-beds that are meters to tens of meters high. They may have associated fossils of land-dwelling plants and animals. The more central part of a desert basin might be a playa lake in which laminated mud and evaporites accumulate.

 

14.     Braided streams have multiple broad, shallow channels in which mostly sheets of  gravel and cross-bedded sand are deposited and mud is nearly absent. Meandering stream deposits have mostly fine-grained sediments on floodplains but do have cross-bedded sand bodies, each with a shoestring geometry. Meandering streams have point bar deposits, consisting of a sand body overlying an erosion surface that developed on the convex side of a meander loop.

 

15.     Both are formed by moving water. Current ripple marks are small and have an asymmetrical profile. They form where water flows in one direction over sand. Wave formed ripple marks are symmetrical and small. They form where waves move to and fro. Since current ripple marks show flow from one direction, they can be used for paleoenvironmental analysis.

 

16.     Current ripple marks can be used to determine ancient current directions because they show flow from one direction. Cross-bedding can also indicate ancient currents because individual beds are inclined downward in the direction of the flow.

 

17.     Bottom to top: fine-grained flat-lying bottomset beds with marine fossils; foreset beds; flat-lying topset beds with fossils of land plants and animals.

 

18.     Graded bedding is usually the result of turbidity currents. These sediment-laden currents move along the bottom of the seafloor. As the velocity diminishes, they deposit large particles followed by progressively smaller ones, forming graded bedding.

 

19.     As the water level rises and falls with the tides, ripples will stack on top of each other in opposite directions producing cross-bedding in opposite directions.

 

20.     Both rounding and sorting are useful in environmental analysis. Rounding indicates transportation, because gravel tends to become rounded quickly as particles collide with one another. Smaller particles carried in suspension are usually not so well-rounded. If a deposit is well-sorted, the particles are all about the same size. Glaciers are powerful and transport all sizes of particles, with deposition upon melting. Wind has limited capacity to transport, so its deposits tend to be well-rounded & sorted.

 

Apply Your Knowledge

1.    Fossils in sedimentary rocks will give indications about the climate, geography, and geologic processes in the area when the organism lived.  The types of rock deposits (rock types, and associations) can also be used to determine whether the ancient environment was continental (glacial, lake, desert, river), transitional (beach, delta, barrier island, tidal flat) or marine (shelf, rise, deep seafloor).  Textures of sedimentary rocks, including rounding and sorting, provide clues about ancient depositional processes.  Sedimentary structures such as ripple marks, cross-bedding, and mud cracks allow geologists to make environmental interpretations.

 

2.   The dinosaur fossils within the sandstone and mudstone indicate that these deposits were terrestrial, and sands and mud could be deposited within a floodplain. After the death of the dinosaurs (or their exit from the area), a transgression took place, as indicated by the sandstone-shale-limestone sequence. The sandstone appears to be marine; the limestone is marine, as indicated by the fossils within in.

 

3.   The “V” of the mudcrack opens toward the surface, indicating that the inner sandstone lens to the left is younger. This is confirmed by the ripple marks, which also indicate that the bottom of the sandstone layer is toward the outer edge of the U-shaped fold. Graded bedding also indicates that the bottom of this bed is toward the upper right, and lower right corners. Therefore, the youngest rocks are in the middle of the fold (syncline).

 

4.   The bedding in the image appears to be (large-scale) cross-bedding. This most probably formed in a wind-blown environment, with the ancient current direction originating in the left, and flowing to the right.

 

 

 


All Pages Copyright © GeoClassroom. All Rights Reserved.